Genetic evaluation with uncertain parentage in aquaculture

R. De Paz, B. Villanueva, M. Herlin, A. Millán, P. Martínez, M. A. Toro, J. Fernández

> In aquaculture $\left\{\begin{array}{c}\text { physiological } \\ \text { logistic }\end{array}\right\}$ reasons
$>$ Mass spawning
\checkmark no control on the contributions of parents
\checkmark impossible to trace paternity of newborn
> Knowledge of relationships helps to:
\checkmark estimate breeding values
\checkmark control the loss of diversity and the rise of inbreeding

Use of molecular markers to reconstruct genealogies

We seek

\checkmark every candidate assigned to a father and a mother

We find

\checkmark some fishes assigned to several possible parents
\Rightarrow usually discarded

... possible solutions ...
enlarge the markers' panel

higher budget

implies

change methodology (software)

OBJECTIVE

> Study through simulation the advantages of:
\checkmark Genotyping with an increasing number of markers
\checkmark Using individuals with uncertain paternity

MATERIAL AND METHODS

$>$ Population structure

\checkmark First round of sea bream breeding program from ABSA (Culmarex)
$\checkmark 1500$ selection candidates
\Rightarrow offspring from $\mathbf{5 0}$ males and $\mathbf{5 0}$ females
$>$ Mating strategy
\checkmark random (breeders in a single tank)
\checkmark controlled monogamous mating (FS families)
$>$ Trait (infinitesimal)
\checkmark Measured in candidates themselves
$\checkmark h^{2}=0.5$ or 0.1

(cont.)

$>$ Genotyping

$\checkmark 4$ or 8 microsatellites
\Rightarrow real frequencies of sea bream population
$\checkmark 25,50$ or 100 SNP
\Rightarrow equal frequencies
\checkmark Paternal assignment with tailored FORTRAN program probability of every 'trio' \Rightarrow probability of every possible parent

only assigned to a single mother and a single father
a single parent of one sex and several of the other sex
several mothers and several fathers

(cont.)

$>$ EBVs calculated through BLUP
\checkmark REMLf90 (I. Misztal)
$>$ Relationship matrix (accounting for uncertainties)
\checkmark U_P_C (J. Fernández)

$>$ Truncation selection of $\mathbf{5 0}$ highest EBVs

(cont.)

$>$ Benchmark selection strategies
\checkmark BLUP with real genealogical relationships BLUP_G
\checkmark truncation based on phenotypes Phenot
$>$ Control parameters
\checkmark percentage of parentage assignment
\checkmark correlation between selection criteria and TVB
\checkmark mean TVB of selected individuals
\checkmark mean coancestry of selected
\checkmark number of coincident selected

RESULTS

100 replicates

> Precision of paternity assignment

Random

	4 mic	8 mic	25 SNP	50 SNP	100 SNP
U	94.42	99.98	48.97	99.70	100.00
P	5.02	0.02	20.52	0.29	0.00
M	0.56	0.00	30.51	0.01	0.00

FS families

	4 mic	8 mic	25 SNP	50 SNP	100 SNP
U	99.98	100.00	98.72	100.00	100.00
P	0.00	0.00	0.00	0.00	0.00
M	0.02	0.00	1.28	0.00	0.00

\checkmark no genotyping errors
\checkmark unrelated breeders (families)

$$
h^{2}=0.5
$$

$>$ Efficiency of selection
Random
\checkmark mean TBV of selected

				Accuracy		
	BLUP_U	BLUP_P	BLUP_M	BLUP_U	BLUP_P	BLUP_M
25 SNP	108.62	109.73	110.31	0.76	0.78	0.75

\checkmark improvement due to more evaluated
\checkmark almost no change in the rest of scenarios
\checkmark BLUP_G better or equal than anyone
\checkmark Using phenotype worse (except extreme cases)
\checkmark Similar results with the other heritability
\Rightarrow but responses lower (obviously)

		Random					FS families				
		Phenot	BLUP_G	BLUP_U	BLUP_P	BLUP_M	Phenot	BLUP_G	BLUP_U	BLUP_P	BLUP_M
4 mic	TBV	101.92	103.24	103.17	103.22	103.22	101.95	103.58	103.58	103.58	103.58
	ρ	0.32	0.53	0.53	0.53	0.53	0.32	0.60	0.60	0.60	0.60
8 mic	TBV	101.90	103.24	103.24	103.24	103.24	101.93	103.54	103.54	103.54	103.54
	ρ	0.32	0.53	0.53	0.53	0.53	0.31	0.59	0.59	0.59	0.59
25 SNP	TBV	101.97	103.23	102.34	102.70	102.70	101.96	103.59	103.58	103.58	103.59
	ρ	0.31	0.52	0.46	0.48	0.43	0.32	0.59	0.59	0.59	0.59
50 SNP	TBV	101.94	103.17	103.15	103.17	103.17	101.88	103.50	103.50	103.50	103.50
	ρ	0.32	0.52	0.52	0.52	0.52	0.31	0.58	0.58	0.58	0.58
100 SNP	TBV	101.89	103.09	103.09	103.09	103.09	101.89	103.43	103.43	103.43	103.43
	ρ	0.31	0.52	0.52	0.52	0.52	0.31	0.58	0.58	0.58	0.58

$>$ Percentage of selected individuals coinciding

\checkmark very similar with acceptable assignment probabilities
\checkmark slightly lower figures for low heritability

TO TAKE HOME

> Including individuals with multiple paternities is not advantageous
$>$ Paternity assignment improves greatly if mating is controlled
$>$ Uncertain relationships may difficult to implement OC to control the lose of diversity and the rise of inbreeding

FURTHER REMARKS

$>$ Some other factors to be accounted for \checkmark genotyping errors may exist
\checkmark more uncertainty expected if breeders are relatives and/or inbred
$>$ Probably larger benefits when dealing with later generations
\checkmark mixed offspring from selected and unselected breeders
\checkmark more uncertainty expected in selected families (higher inbreeding)
$>$ Repeat study with the second round of selection

UNCERTAINTY

Thank you!

M. A. Toro
M. Herlin

USC

A. Millán
P. Martínez

